Driving consistency errors overestimate crash risk from cellular conversation in two case-crossover studies. Presentation at The Sixth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Lake Tahoe, CA, June 29th, 2011.

Goal

To help explain the discrepancy in relative risk estimates between recent and early epidemiological studies of call-crash association.
What is the Discrepancy?
Crash Relative Risk (RR) while on Cell Phone

- Four recent epidemiological studies*
 - RR approximately 1
 (risk parity with baseline driving)
 *Klauer et al. (2006, 2010), Young & Schreiner (2009), Olson et al. (2009)

- Two early epidemiological studies**
 - RR approximately 4
 (four times more crash risk than baseline driving)
 **Redelmeier & Tibshirani (1997), McEvoy et al. (2005)

What Does the Discrepancy Mean?

- Different study designs should produce similar results if risk is small and no bias is present (Rothman et al., 2008).

- Discrepancy (RR of 1 vs. 4) implies bias.*
 *epidemiological, not personal bias

- This paper examines “driving consistency” bias.
Crude Relative Risk Estimate

- The *crude* RR is unadjusted for driving bias.

- The early epidemiological studies* recognized that their crude estimates were biased (confounded) by non-driving on the control day.

*Redelmeier & Tibshirani (1997), McEvoy et al. (2005)

Control for Driving Consistency

- Redelmeier and Tibshirani (1997) interviewed 100 people (not in their original study):
 - "...35 percent of them did not drive during the selected period."
 - That is, 65% of them recalled driving in a "selected period," presumably on a previous day.

- Redelmeier and Tibshirani (1997) adjusted RR:
 - Multiply crude RR by driving consistency estimate of 65%
 - $6.54 \times 0.65 = 4.3$
Crude Data*
RR = 6.54
*Redelmeier & Tibshirani (1997)

Control Day
Call No Call
Crash Day
Call 13 157
No Call 24 505
RR = 157/24 = 6.54

Control Day Window

Adjusted Data*
RR = 6.54 x 0.65 = 4.3
*Redelmeier & Tibshirani (1997)

Control Day
Call No Call
Crash Day
Call 13 102
No Call 24 505
RR = 102/24 = 4.3

Control Day Window

Key:
- 10 driving
- 10 calls

Driving Consistency Errors
New Estimate of Driving Consistency

- GPS sub-sample from the Chicago “Travel Tracker” database of heavy travelers, at least 10 trips per day
- Known trip activity for 240 GPS-instrumented vehicles during 2007-2008
- Minute-by-minute comparison of driving on day 2 for consistency with day 1

Hypothetical Consistency Examples

<table>
<thead>
<tr>
<th>Minute of Driving</th>
<th>Day 2</th>
<th>Day 1</th>
<th>Consistent?</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Key: 1=Yes, 0=No

- Number of consistent minutes: 0
- Number of minutes in day 2: 10
- Driving consistency: 0%

<table>
<thead>
<tr>
<th>Minute of Driving</th>
<th>Day 2</th>
<th>Day 1</th>
<th>Consistent?</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Key: 1=Yes, 0=No

- Number of consistent minutes: 2
- Number of minutes in day 2: 10
- Driving consistency: 20%
New Results: Consistency of GPS Driving Times

Consistency of Driving Times on Successive Days

- Only 2 vehicles (1%) had complete overlap (100% consistency) of day 2 to day 1
- Most vehicles had only part-time driving on day 1 that overlapped day 2
- Average of the 130 vehicles with at least some consistency was 27.4%
- Average across all 240 vehicles was 14.8%

Key Point: Part-Time Driving

- Redelmeier and Tibshirani (1997) and McEvoy et al. (2005) apparently retained a subject if they recalled driving at any time during the control window (that is, any person with more than 0% consistency).

- This method does not control for part-time driving in the control window.

- Accounting for the full range of driving consistency in the control window yields driving consistency = 14.8%.
Driving Consistency = 14.8% Implies RR = 1.0

- Redelmeier and Tibshirani’s (1997) raw RR
 - RR = 6.54 (C.I. of 4.5 to 9.9)

- Apply driving consistency of 14.8%
 - RR = 0.96 (C.I. 0.67 to 1.5)

- Consistent with recent studies*
 *Klauer et al. (2006, 2010), Young and Schreiner (2009), Olson et al. (2009)

Adjustment of Odds Ratio Estimate of McEvoy et al. (2005)

- Raw RR: 4.1 (C.I. of 2.2 to 7.7)
 - McEvoy et al. pre-censored those who did not recall driving during control windows (0% consistency), but again assumed 100% consistency for the rest.

- Driving consistency should be 27.4%
 - Average for all vehicles with > 0% consistency

- Resulting RR: 1.1 (C.I. of 0.60 to 2.1)

- Consistent with recent studies*
 *Klauer et al. (2006, 2010), Young and Schreiner (2009), Olson et al. (2009)
Discussion (1)

- Early case-crossover studies properly removed control windows in which the subject did not recall driving
 - People may have more calls per minute when driving, biasing RR upwards
- These studies did not control for part-time driving during control windows
- GPS data indicate driving consistency is lower than previously estimated
 - Raw RR (without adjustment for driving consistency) in earlier studies likely biased upward

Discussion (2)

- Applied Redelmeier and Tibshirani (1997) methodology using a more accurate driving consistency estimate
- The adjusted relative risk estimates of Redelmeier and Tibshirani (1997) and McEvoy et al. (2005) are near one
- These adjusted estimates are consistent with recent epidemiological studies results
 Klauer et al. (2006, 2010), Young and Schreiner (2009), Olson et al. (2009)
Discussion (3): Limitations

- Did not use the same drivers as in the early case-crossover studies to estimate driving consistency
- Did not prove high relative risk estimates in early case-crossover studies entirely attributable to driving consistency errors
- To prove, must use case-crossover design with instrumented vehicles
 - Must also have cellular call billing data when not driving
 - Not collected in any naturalistic study to date, including SHRP 2
- Driving consistency should be calculated with GPS data from additional cities

Discussion (4)
Present Study Supports:

- The hypothesis that the two early case-crossover studies overestimated RR
- Overestimating driver consistency accounts for much of the discrepancy between the recent and early relative RR estimates.
Visual-Manual Risks while Driving

- Cell phone “usage” comprises two separate types of tasks
 - conversation (auditory-vocal)
 - visual-manual

- Earlier studies may have overstated conversation risks
- Does not mean cell phones are “safe”
- Studies suggest elevated visual-manual risks
 - 3-7 times increase in risk for manual 10-digit dialing or reaching for a cellular phone; 23 times increase for texting (Klauer et al., 2006; Olson et al., 2009)

Conclusion

Objective GPS data indicates that two early case-crossover studies likely overestimated the amount of driving during control windows, which translates into lower exposure for cellular conversation during control vs. crash windows, introducing overestimates of relative risk.
Acknowledgments

I thank Joshua Cohen, Barbara Wendling, Christopher Tyler, and Li Hsieh for helpful comments, and Sean Seaman for computational assistance.

References

Thank you!