TRB 91st Annual Meeting

Measuring Cognitive Distraction on the Road and in the Lab with the Wayne State Detection Response Task

Richard A. Young, Sean Seaman, Li Hsieh

January 24, 2012
Goals

1. Evaluate the Wayne State Enhanced Detection Response Task ("EDRT") as a measure of "cognitive distraction."

2. Compare lab to road results for other versions of the DRT.

Lab Methods:
EDRT Dual Task (Baseline) Condition

• Primary Task
 – Attend to a high-definition video of a real driving scene; steer to keep marker in center of lane.

• EDRT Task
 – Only one Light Event (green or red) appears at a time; Inter-Stimulus Interval of 3 to 5 seconds.*
 – Light Event stays on for 1 second.*

• Instructions to Subjects:
 – First priority: Watch driving video and steer to stay in lane.
 – Second priority: Respond to all red lights with finger presses; do not respond to green lights.

* Per draft ISO DRT standard.
Lab Methods: EDRT Visual Stimuli

Steer to stay in lane.

- Red Left: Small red lights to left or center; respond
- Green Left: Small green lights; do not respond
- Red Center: Small red lights to center
- Green Center: Small green lights; do not respond
Lab Methods: EDRT Manual Response

- Finger press for red light*; do not respond (inhibit) to green light.
- RT recorded from stimulus onset until response with finger press.*
- “Miss” defined as RT outside range of 100 < RT < 2500 msec.*

*Per draft ISO DRT standard.

Finger response paddle

Not Pressed

Pressed
Triple Task Condition

• Dual Task plus N-Back or SuRT third task
 – N-Back and SuRT same priority as responding to lights.*
 – But secondary priority to driving or simulated driving.*

• Triple Task Instructions (lab and road):
 “Your main priority is to drive safely. Please remember to maintain your position in the center of the lane. The light and the [n-Back/SuRT] tasks will both be active during the run. Please do your best to pay attention to both tasks.”*

*Per draft ISO DRT standard.
Triple Task Condition: N-Back

- Dual Task plus N-Back Task.
- While responding to lights while driving, subjects were also presented a series of spoken numbers for two minutes.
- For 0-Back, subjects spoke the last number heard.

 SPEAKER: 6 3 7 8 …
 CORRECT RESPONSE: 6 3 7 8 …

- For 1-Back, subjects spoke number heard before last.

 SPEAKER: 6 3 7 8 …
 CORRECT RESPONSE: 6 3 7 8 …
Triple Task Condition: SuRT

- Dual Task plus SuRT (“Surrogate Reference Task”).
- While responding to lights while driving, subjects scan a visual display of circles, one of which was larger than the others, and then use three keys on a keypad to indicate which region of the screen held the larger circle.
- Subjects instructed to complete the task as quickly and accurately as possible, and worked at their own pace, repeatedly doing the SuRT for a two-minute period.

Easy SuRT task:
- The target circle is much bigger than the distracting circles.
- There are only two regions to choose from.

Hard SuRT task
- The target circle is only slightly bigger than the distracting circles.
- There are six regions to choose from.
Lab Triple Task: Primary Driving + Lights + SuRT
Lab: Statistical Methods

• 12 healthy subjects 25-45 years old; minimal annual driving 6,200 miles.
• 2 min for every condition; each condition run twice.
• Means and SEs plotted for: five task conditions (Baseline, 0-Back, 1-Back, Easy SuRT and Hard SuRT) x four light conditions (Red Left, Red Center, Green Left, Green Center).
• All subjects run in all conditions so paired t-tests are used, reducing variability and improving power:
 – Difference of 1-Back from 0-Back DRT responses.
 – The significance levels of difference scores were based on 1-tailed probabilities, because the direction of the effect was predicted in advance.
• (Not shown today: subjective workload, error rates, and task times for secondary n-Back and SuRT tasks; eye glance data)
Lab: EDRT (n=12)

EDRT Response Time

- Longer RTs during 1-Back vs. 0-Back
- RTs about = during Easy vs. Hard SuRT

EDRT Miss Rate

- More red light events missed during 1-Back vs. 0-Back
- More red light events missed in Hard vs. Easy SuRT

Key:

- *p < .05
- **p < .01

1/24/12
Lab: EDRT Inhibition Failure Rate (n=12)

More responses to Green Light Event ("failures to inhibit") during Hard SuRT vs. Easy

Key:
*p < .05
Lab – Other DRTs (n=12)

DRT Response Time

- R,H,T: Longer RTs during 1-Back vs. 0-Back
- R,H: RTs = during Easy vs. Hard SuRT
- Tactile: Shorter RTs during Hard vs. Easy SuRT

DRT Miss Rate

- More events missed during 1-Back than 0-Back
- Remote: More red light events missed during Hard vs. Easy SuRT

Key:
* $p < .05$
** $p < .01$
Road RT (n=5)*

DRT Reaction Time

*Data from Dynamic Research, Inc.
Road Miss Rate (n=5)*

Remote & Head-Mount:
More red light events missed during Hard vs. Easy SuRT

Tactile:
Tendency for fewer misses during Hard vs. Easy SuRT

*Data from Dynamic Research, Inc.
Predicting Road1 from Lab Results

The correlation from lab to road across RTs for all corresponding tasks was high at $r = 0.89$, $p = 6.51 \times 10^{-16}$, $n=15$ tasks (3 DRT conditions x 5 Delta RT conditions for each).

1Road data from Dynamic Research, Inc.

The correlation from lab to road across miss rates for all corresponding tasks was high at $r = 0.89$, $p = 9.54 \times 10^{-16}$, $n = 15$ tasks.

- Validation results consistent with Young et al. (2009) on-road validation study of Extended Static Load Test, similar to ISO-compliant EDRT.
Results Summary: N-Back

1-Back vs. 0-Back

<table>
<thead>
<tr>
<th>DRT</th>
<th>Visual Location</th>
<th>Venue</th>
<th>RT Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended</td>
<td>Left</td>
<td>Lab</td>
<td>></td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td>Lab</td>
<td>></td>
</tr>
<tr>
<td>Remote</td>
<td>Left</td>
<td>Lab</td>
<td>></td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>Road*</td>
<td>></td>
</tr>
<tr>
<td>Head-Mounted</td>
<td>Left</td>
<td>Lab</td>
<td>></td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>Road*</td>
<td>=</td>
</tr>
<tr>
<td>Tactile/Auditory</td>
<td>None</td>
<td>Lab</td>
<td>></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>Road*</td>
<td>></td>
</tr>
</tbody>
</table>

*Wayne State Lab DRT performance data validated by Dynamic Research Inc. On-Road test.
Results Summary: SuRT

- Different DRT types and RT and Miss Rate gave contradictory predictions for cognitive load during Hard vs. Easy SuRT.

<table>
<thead>
<tr>
<th>DRT</th>
<th>Location</th>
<th>Venue</th>
<th>RT</th>
<th>Miss Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended</td>
<td>Left</td>
<td>Lab</td>
<td>=</td>
<td>></td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td>Lab</td>
<td>=</td>
<td>></td>
</tr>
<tr>
<td>Remote</td>
<td>Left</td>
<td>Lab</td>
<td>=</td>
<td>></td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>Road*</td>
<td>=</td>
<td>></td>
</tr>
<tr>
<td>Head-Mounted</td>
<td>Left</td>
<td>Lab</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>Road*</td>
<td>=</td>
<td>></td>
</tr>
<tr>
<td>Tactile/Auditory</td>
<td>None</td>
<td>Lab</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>Road*</td>
<td><</td>
<td><</td>
</tr>
</tbody>
</table>

*Wayne State Lab DRT performance data validated by Dynamic Research Inc. On-Road test.
Discussion: Main Findings

• All DRT types correctly predicted increased cognitive load during 1-Back vs. 0-Back for Lab and Road.
 – In the lab, the Wayne State Extended DRT also showed an increased “failure to inhibit” to the green light event during 1-Back vs. 0-Back.

• There were contradictory predictions about cognitive load during Hard vs. Easy SuRT.
 – Different DRT types gave opposite predictions; RT and Miss Rate metrics gave different predictions.
 – There appear to be complex interaction effects between sensory modalities for DRT types and tasks.

• The Wayne State lab results for Remote, Head-Mount, and Tactile DRT were validated by on-road tests by Dynamic Research, Inc.
 – Consistent with previous Remote PDT validation results (Angell et al., 2002, 2006; Young et al., 2009)
Conclusions and Recommendations

• These preliminary DRT results for the N-Back task are promising, continuing an active line of research into the PDT and its variants that is now over 15 years old.

• However, the different DRT types and RT vs. Miss Rate metrics give contradictory estimates of the relative amount of “cognitive distraction” during Hard vs. Easy SuRT, for both lab and road.

• Therefore, the DRT is not recommended as an ISO standard for measuring “cognitive distraction” or “workload” while driving.

• Instead, the DRT is recommended at a minimum as an ISO standard for measuring “selective attention” while driving.

• The DRT is recommended for consideration as a general measurement of “event detection and response” while driving, a more general category than either “cognitive distraction” or “selective attention” (Young, accepted, 2012).
Acknowledgements

• This ISO research project was partially supported by a contract from Toyota Collaborative Safety Research Center to Wayne State University (Li Hsieh, PI).
• Road data were collected by Dean Chiang and Amanda Kirsch at Dynamic Research, Inc., and shown with permission.
• We thank Amanda Zeidan of Wayne State University for technical support.

Research Team

Richard Young
Research Professor

Sean Seaman
Research Associate

Li Hsieh
Associate Professor
References

